发表主要论文40多篇,SCI收录30多篇,其中SCI中科院一区TOP期刊5篇;获得发明专利授权3件。
1. Zhang S, Sun Z, Wang M, Long J, Bai Y, Li C. Deep Fuzzy Echo State Networks for Machinery Fault Diagnosis, IEEE Transactions on Fuzzy Systems, Early Access, 2019, DOI: 10.1109/TFUZZ.2019.2914617.
2. Shaohui Zhang, Zhenzhong Sun, Chuan Li, Diego Cabrera, Jianyu Long, and Yun Bai. Deep hybrid state network with feature reinforcement for intelligent fault diagnosis of delta 3D printers, IEEE Transactions on Industrial Informatics, Early Access, 2019, DOI: 10.1109/TII.2019.2920661.
3. Shaohui Zhang, Xiang Duan, Chuan Li, Ming Liang. Pre-classified reservoir computing for the fault diagnosis of 3D printers, Mechanical Systems and Signal Processing, Accept, 2020.
4. Guo J, Li X, Liu Z, Zhang S*, Wu J, Li C, Long J. A novel doublet extreme learning machines for Delta 3D printer fault diagnosis using attitude sensor. ISA Transactions, in press, 2020.
5. Pu Z, Li C, Zhang S*, Bai Y. Fault diagnosis for wind turbine gearboxes by using deep enhanced fusion network. IEEE Transactions on Instrumentation and Measurement, in press, 2020.
7. Chuan Li, Shaohui Zhang*, Qing Yi, A systematic review of deep transfer learning for machinery fault diagnosis, Neurocomputing, Accept.
8. Zhang S, Sun Z, Long J, et al. Dynamic condition monitoring for 3D printers by using error fusion of multiple sparse auto-encoders, Computers in Industry, 2019, 105: 164-176.
9. Zhang S, Wang M, Yang F, Li W. Manifold Sparse Auto-Encoder for Machine Fault Diagnosis. IEEE Sensors Journal, in press, 2019.
10. J Guo, Z Lao, M Hou, C Li, S Zhang*. Mechanical Fault Time Series Prediction by using EFMSAE-LSTM Neural Network, Measurement, in press, 2020.
11. Jianyu Long, Zhenzhong Sun, Chuan Li, Ying Hong, Yun Bai, Shaohui Zhang*. A novel sparse echo auto-encoder network for data-driven fault diagnosis of delta 3D printers, IEEE Transactions on Instrumentation and Measurement, pp: 1-10, 2019.
12. 张绍辉,李巍华,基于特征空间降噪的局部保持投影算法及其在轴承故障分类中的应用,机械工程学报,2013,(03):92-99.
13. 张绍辉,李巍华,可变近邻参数的局部线性嵌入算法及其在轴承状态识别中的应用,机械工程学报,2013,(01):81-87.
15. 张绍辉,基于多路稀疏自编码的轴承状态动态监测,振动与冲击,2016,35 (19): 125-131.
16. 张绍辉. 集成参数自适应调整及隐含层降噪的深层RBM算法. 自动化学报, 2017, 43(5): 855-865.
17. 张绍辉,罗洁思. 基于频谱包络曲线的稀疏自编码算法及在齿轮箱故障诊断的应用. 振动与冲击, 2018, 4: 037.
18. 李巍华,翁胜龙,张绍辉. 一种萤火虫神经网络及在轴承故障诊断中的应用,机械工程学报,2014,51(2):1-7.
19. 李巍华,李静,张绍辉,连续隐半马尔科夫模型在轴承性能退化评估中的应用,振动工程学报,2014,(04):613-620.
20. 李巍华,戴炳雄,张绍辉,基于小波包熵和高斯混合模型的轴承性能退化评估,振动与冲击,2013,(21):35-40+91.
21. 李川,张绍辉, José Valente de Oliveira. 基于次优网络深度学习的3D打印机故障诊断,机械工程学报,2019.
22. 罗洁思,张绍辉,李叶妮. 多分辨奇异值分解在滚动轴承振动信号解调分析中的应用,振动工程学报,2019,6(32):1114-11120.